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We present a generalization of the Riccati method for solving difficult linear differential 
eigenvalue problems, which allows the differential system to be of either even or odd order. 
As an example of an odd order problem we use the method to obtain the first four eigen- 
values of the Blasius problem, making use of a complex contour of integration to avoid the 
singularities of the Riccati equation. We also give numerical results for an Orr-Sommerfeld 
problem which illustrate the efficacy of the Riccati method compared to orthonormalization. 

1. INTRODUCTION 

In an excellent paper Scott [6] has described the important Riccati method for 
solving linear differential eigenvalue problems for systems of ordinary differential 
equations. The basic solutions of a linear differential system are usually exponential 
in character and if the real parts of the characteristic values of the operator are 
widely separated then, when using an explicit integration scheme, parasitic growth 
problems occur and a special method, such as orthonormalization [l], will be needed 
to resolve the problem. The importance of the Riccati method lies in the fact that it 
transforms the linear problem into a nonlinear problem whose characteristic values 
all have negative real parts thus ensuring that the integration will be stable. The 
exponential character is essentially transformed by the nonlinearity to a tanh type 
behavior. 

In Scott’s paper he restricted his attention to differential systems of even order with 
an equal number of boundary conditions at each end of the range of integration. In 
Section 2 of this paper we formulate the Riccati method in a different way from Scott 
which will allow us to consider a differential system of either even or odd order and 
which can have more boundary conditions specified at one end of the range of 
integration than at the other end. We illustrate the use of the method by considering 
the Blasius eigenvalue problem as discussed by Wilks and Bramley [8] and we intro- 
duce the idea of using a complex contour of integration as an alternative to the 
“switching” procedure which is frequently necessary when the Riccati method is 
used. Then, in Section 3, we present a numerical comparison of the solution of the 
Orr-Sommerfeld equation for plane Poiseuille flow at high Reynolds numbers using 
the Riccati method and using orthonormalization. 
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2. GENERALIZATION OF THE RICCATI METHOD 

Let us consider the homogeneous linear differential eigenvalue problem of order n 

y’ = Fy, (1) 

where y = ( vi) is a complex n-vector, and F is an n x n matrix of coefficients and a 
’ denotes differentiation with respect to the independent variable x. We suppose that x 
may be chosen so that the range of integration is 0 < x < 1, and so that we know 
more boundary conditions, m, at x = 0 than at x = 1, unless n is even when m may 
be in. 

Let the boundary conditions at x = 0 be 

Gy = 0, (2) 

where G is an m x II matrix and the r.h.s. of (2) will be an m-vector. We suppose that 
the remaining p = IZ - m boundary conditions can also be written in a form similar 
to (2) at x = 1. We shall write these down later. 

Now consider all the solutions of (1) which satisfy (2), these will lie in a vector space 
of dimension p spanned by the unknown conditions at x = 0. Thus there will be a set 
ofp of the elements of y which can be chosen arbitrarily, at any value of x, which will 
determine the other m = n - p elements of y at the same value of x. Let the set of m 
such elements be denoted by the m-vector u and let the set of p elements be denoted 
by the p-vector v. We choose u to be Gy. 

It follows that we can rewrite (1) and (2) in the form 

u’ = Au + Bv, (3) 

v’ = Cu + Dv, (4) 
and 

u = 0, when x = 0. (5) 

The dimensions of the matrices A, B, C, D, will be m x m, m x p, p x m, p x p, 
respectively. Moreover, at any value of x, for all the solutions of (1) which satisfy (2), 
u will be determined by v and there will exist a matrix R of dimension m x p such 
that 

u = Rv. (6) 

The matrix R corresponds to Scott’s matrix RI when m = p, and we now obtain the 
Riccati equation for R. 

To obtain this equation we use the fact that at this stage v is arbitrary and we 
substitute (6) in (3), (4) to obtain, respectively, 

and 

R’v + Rv’ = ARv + Bv, (7) 

v’ = (D + CR)v. 03) 
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We now eliminate v’ between (7), (8) and since the resulting equation must be valid 
for all v we obtain the Riccati equation for R, namely 

R’ = B + AR - R(D + CR). (9) 

We must now determine the boundary conditions for (9). When x = 0 the boundary 
condition is (5), which must be valid for all v, so that 

R = 0, when x = 0. 00) 

When x = 1 we will be able to write the boundary condition in the form 

Hu = Jv, 

where H is a p x m matrix anh J is a p x p matrix so that, using (6) then 

(HR - J)v = 0, when x = 1. (11) 

Hence the differential equation to be integrated is (9) with initial condition (10) 
and the eigenvalues will be such as to make 

det(HR - J) = 0, when x = 1. (12) 

In general H will be nonzero and an iterative technique or a Dirac comb can be used 
to locate the eigenvalues. In the special case when H = 0 then R is singular at x = 1 
and (12) cannot be used to determine the eigenvalues. This difficulty can be overcome 
if we also integrate backward over a small range from x = 1 toward x = 0 and find 
the new matrix S, corresponding to R, which will be such that v = Sn. The boundary 
condition (12) may then be replaced by 

at x = 1 - E, E > 0, say. 

-1 R 
S -1 =o, 

When the required eigenvalue has been found we may then obtain the eigen- 
function. To do this we first solve (11) to find the associated eigenvector v at x = 1. 
We can then obtain v over the whole interval 0 < x f 1 by integrating (8) backward 
from x = 1 to x = 0. When this integration is done it is important to use previously 
stored values of R rather than simultaneously integrating the Riccati equation 
backward as Sloan [7] has well explained. The point here is that the Riccati method 
ensures that all the real parts of the characteristic values of (D + CR) in (9) will be 
positive. Therefore the Riccati equation will be stable during a forward integration 
and Eq. (8) for v will be stable during a backward integration. (The Riccati equation 
will be unstable during a backward integration and the v equation will be unstable 
during a forward integration.) After v has been found over the whole range 0 < x < 1 
then u is given by (6) and so the complete eigenfunction is obtained. Gersting and 



334 A. DAVEY 

Jankowski [3] failed to obtain eigenfunctions because they tried to integrate the Riccati 
equation backward at the same time as they integrated their v equation. 

For a real problem with real eigenvalues singularities of (9) may be encountered 
when the integration is along the real axis because a consideration of the general 
initial value problem shows that R is essentially the ratio of two matrices and the 
denominator will cause R to be singular if the problem with complementary boundary 
conditions at x = 1 has characteristic lengths on the range of integration. When 
m = p this difficulty can be circumvented by switching to the inverse of R as has been 
explained by Scott [6]. When m # p, or even when m = p, this difficulty can however, 
also be easily overcome by deforming the contour of integration into the complex 
plane. For a problem defined on the real axis with complex eigenvalues singularities 
of R are not so likely to be encountered because the complementary problem will not 
be likely to have real characteristic lengths, but even if they are then again the contour 
can be deformed. 

For instance if one uses the Riccati method to solve the adjoint Orr-Sommerfeld 
equation for plane Couette flow when the wave number K = 1 and the Reynolds 
nomber Re = 8000, one cannot integrate along the real axis from x = 0 to x = 1 
without “switching” due to the existence of a singularity near x = 0.074. If, however, 
one integrates along the contour z = t + @t(l - t), 0 < t < 1, with either 
/3 = -0.05 or /3 = $0.05 the eigenvalue is obtained without any difficulty, correct 
to six significant figures using 500 integration steps. We have also used the Riccati 
method together with complex contours to solve an astrophysical problem, Jones [4]. 

As an example of the application of the above generalization of the Riccati method 
to an odd order differential problem we have considered the eigenvalue problem of 
perturbations from the Blasius velocity profile for the boundary-layer flow of a viscous 
incompressible fluid past a semi-infinite flat plate as considered by Libby [5] and 
Wilks and Bramley [8]. 

The differential equation for the eigenfunction y(x) and eigenvalue 0 is 

y”I +fy” + uf’y’ + (1 - u)f’> = 0, (13) 

and the boundary conditions are 

y = y’ = 0, when x = 0, (14) 

y’ + 0 exponentially as x -+ co, (15) 

where f is the usual Blasius function. 
We take 

u= Y, ) 
( ) Y 

v  = (Y”), R = (;) , 

so that we set y = r, y” and y’ = r2 y” and the equations for r, , r, are 

(17) 
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and 
r2l =, 1 +frz + G-f’r22 + (1 - u)f”rxr2 . (18) 

Boundary conditions (14) and (15) yield 

rl = r2 = 0, when x = 0, 

12 - (-l/f), asx-co. 
(19) 

Usually with problems defined on a semi-infinite interval one starts the integration 
from x large, via a few terms of an asymptotic expansion, and integrates towards 
x = 0. We do not adopt such a course here because for this particular problem the 
asymptotic details make the Riccati method rather cumbersome when the integration 
is from x large to zero. A penalty which we have to pay because we integrate from 
x = 0 is to be careful to integrate far enough out to be able to select the required 
solution, but not too far out because all solutions decay as x increases whatever the 
value of u. 

A preliminary attempt to obtain the first eigenvalue by integration along the real axis 
met with failure, as expected, because a singularity was encountered. Since it is known 
that all the eigenvalues of this problem are real it is likely that all the characteristic 
lengths of the complementary problem, where the Riccati equation has its singularities, 
will also be real. The problem is therefore an ideal candidate for using a complex 
contour and we chose the contour z = t - O.O2it(h - t), 0 < t < X. The first 
four eigenvalues which we obtained were u = 2.0000, 3.7737, 5.6287, 7.5132 using 
A = 6,7, 8,9, respectively, and with X = 8 we obtained 3.7736 for the second 
eigenvalue and hence complete agreement with the values found by Wilks and 
Bramley [ 81. 

3. COMPARISON OF THE RICCATI I%TI-IOD WITH ORTHONORMALIZATION 

To illustrate the usefulness of the method described in Section 2 we will use it to 
calculate the eigenvalue c which corresponds to the most unstable mode in the 
classical linear stability problem of plane Poiseuille flow, when the wavenumber 
K = 1 and the Reynolds number Re is very large, so that the characteristic values 
of the differential operator will be of order f 1 and fRe1i2. The differential equation 
for this problem is the On-Sommerfeld equation 

Lc$ G {II2 - K2 - iK Re(1 - x2 - c)}{D2 - K”}$ - 2if.r Re + = 0, (20) 

and the appropriate boundary conditions for the most unstable mode are 

q3’ = c#“’ = 0, when x = 0, (21) 
and 

rp = 4’ = 0, when x = 1. (22) 

We shall be particularly concerned with solutions for very large values of Re in order 
to obtain a true comparison between using the Riccati method and using orthonormal- 
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ization; this problem has been considered previously for smaller values of Re by 
several authors, see for example [2, 31. See also Sloan [7] for details of the evaluation 
of the eigenfinction. 

We integrate from x = 0 to x = 1 using a Runge-Kutta routine and first we use an 
orthonormalization method and a Newton-Raphson process to iterate to the eigen- 
value and we determine, for log,, Re = 5(1)10, the smallest number of integration 
steps of equal length which we can use to obtain the eigenvalue c correct to four 
significant figures. When Re is very large this number is proportional to Re1i2 because 
the main restriction is that the Runge-Kutta routine must be convergent. 

Second we repeat these calculations using the Riccati method of Section 2 and with 

We use this particular formulation because then it transpires that r3 = 2iK Re r2 
and so only rl , r2 , 4 r need be found. (That we can do this is only made possible by 
the special form of the basic velocity profile for plane Poiseuille flow.) The differential 
equations for r1 , r2 , r4 are 

rl’ = ~~ - r12 - 2ix Re rs2, 

r2’ = 1 - r1r2 - r,r, , 

r4’ = K2 + iK Re(1 - x2 - c) - 2iK Re r22 - rd2, 
(24) 

and the boundary conditions are 

rl = r2 = r, = 0, when x = 0, 
(25) 

r2 = 0, whenx = 1. 

The comparison between the two methods is presented in Table I. The column 
headed ONIZ is approximately the smallest number of integration steps which may 
by used to calculate c correctly to four significant figures using orthonormalization. 
The column headed RICCATI is the corresponding number using the Riccati method 
via (24), (25). The absence of the r3 equation does not affect the comparison. 

It is clear from Table I that when Re112 > 1000, so that the characteristic values 
of the differential operator, f 1, fRe1i2 say, are very widely separated then the Riccati 
method requires approximately twice as many integration steps as orthonormalization. 
This is only to be expected in view of the fact that the basic solutions of the original 
linear equation are of exponential character whereas the solutions of the Riccati 
equation are of a tanh character and so for very large characteristic values the 
integration routine will only be convergent if the step length is ha1ved.l Both methods 

1 For if say, + N a& + be” + ce-% + de- Az, and the step length is h the Runge-Kutta routine will 
require Ah < 2, say, for convergence, and ri - (a’& + b’e* + ~‘e-~ + d’e-Az)/(a& + be” + cc2 + 
de-“3 so that ri N a’/a + ... + due-a=, as x increases; and now we shall need 2Ah < 2 for converg- 
ence, where h N Relle. 
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TABLE I 

The smallest number of integration steps of equal length which may be used to calculate the eigenvalue 
c correct to four significant figures by the two methods 

logloRe c ONIZ RICCATI 

5” 0.14592 - 0.01504i 325 300 
6 0.06659 - 0.01398i 600 800 
7 0.03064 - 0.007261 1200 2600 
8 0.01417 - 0.00351i 3700 8200 
9 0.006566 - 0.00166Oi 12000 26000 

10 0.003045 - 0.000777i 37000 82000 

a For this entry c was calculated correct to five decimal places instead of four significant figures. 

needed roughly the same number of iterations, usually three or four, and when 
Re1/2 > 1000 we found that the computing times required by the two methods 
differed by less than 7 %. This is mainly because the factor of two as regards the 
number of steps required by the two methods is balanced by the fact that the ortho- 
normalization method has to integrate twice as many differential equations. 

When Re1j2 < 1000 so that the characteristic values are not too widely separated 
then the step length for the Riccati method is not so severely restricted and, as Table I 
indicates, as Re is lowered the Riccati method requires comparatively fewer integration 
steps and hence requires less computing time than orthonormalization. This advantage 
of the Riccati method should be enhanced if a sophisticated variable-step integrator 
is used to accommodate the tanh character of the ri relative to similar accommodation 
of the structure of 4 using orthonormalization. 

All the comments above as regards the relative computing times required did not 
take advantage of the relationship r3 = 2iK Re r2 , all four equations for rl , r2 , r3 , r4 
were integrated when timing. 

4. CONCLUSIONS 

For a general difficult problem we expect the Riccati method to require appro- 
ximately the same number of integration steps as the orthonormalization method, 
when using a Runge-Kutta type of integration procedure. Also, in general, the 
Riccati method will only need to integrate about half as many differential equations 
as the orthonormalization method. In consequence the Riccati method will be faster 
than orthonormalization by a factor of order two. Even if the problem is very difficult 
so that the characteristic values are very widely separated the Riccati method will still 
be as fast as orthonormalization. 

Another important advantage of the Riccati method is that it is so simple to 
formulate and program compared with the intricacies of orthonormalization. This is 
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particularly highlighted by the fact that it is much easier to evaluate the eigenfunction 
using the Riccati method, and this advantage, together with the others mentioned 
above would seem to indicate that the Riccati method may often be preferable to 
orthonormalization. 

If the posed problem is not self-adjoint it is often useful to solve the adjoint problem 
during initial tests since it may require less computing time. Moreover, a comparison 
of the solutions of the posed problem and its adjoint is invariably a good guide to the 
accuracy of these solutions. 

It is interesting that whereas the analytical solution of a nonlinear differential 
problem may be facilitated by transforming it into a linear system, the numerical 
solution of a linear differential system may be facilitated by transforming it into a 
nonlinear problem ! 
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